Abstract
Background and purpose
Despite multimodal treatment of glioblastoma (GBM), recurrence beyond the initial tumor volume is inevitable. Moreover, conventional MRI has shortcomings that hinder the early detection of occult white matter tract infiltration by tumor, but diffusion tensor imaging (DTI) is a sensitive probe for assessing microstructural changes, facilitating the identification of progression before standard imaging. This sensitivity makes DTI a valuable tool for predicting recurrence. A systematic review was therefore conducted to investigate how DTI, in comparison to conventional MRI, can be used for predicting GBM progression.
Methods
We queried three databases (PubMed, Web of Science, and Scopus) using the search terms: (diffusion tensor imaging OR DTI) AND (glioblastoma OR GBM) AND (recurrence OR progression). For included studies, data pertaining to the study type, number of GBM recurrence patients, treatment type(s), and DTI-related metrics of recurrence were extracted.
Results
In all, 16 studies were included, from which there were 394 patients in total. Six studies reported decreased fractional anisotropy in recurrence regions, and 2 studies described the utility of connectomics/tractography for predicting tumor migratory pathways to a site of recurrence. Three studies reported evidence of tumor progression using DTI before recurrence was visible on conventional imaging.
Conclusions
These findings suggest that DTI metrics may be useful for guiding surgical and radiotherapy planning for GBM patients, and for informing long-term surveillance. Understanding the current state of the literature pertaining to these metrics’ trends is crucial, particularly as DTI is increasingly used as a treatment-guiding imaging modality.
If you do not see content above, kindly GO TO SOURCE.
Not all publishers encode content in a way that enables republishing at Neuro.vip.
This post is Copyright: Francesca M. Cozzi,
Roxanne C. Mayrand,
Yizhou Wan,
Stephen J. Price | December 9, 2024
Wiley: Journal of Neuroimaging: Table of Contents