Abstract
Background and Purpose
The optic nerve sheath diameter (ONSD) is a commonly used estimate of intracranial pressure (ICP). The rationale behind this is that pressure changes in the cerebrospinal fluid affect the optic nerve subarachnoid space (ONSAS) thickness. Still, possible effects on other compartments of the optic nerve sheath (ONS) have not been studied. This is the first study ever to analyze all measurable compartments of the ONS for associations with elevated ICP.
Methods
We measured changes in ICP and changes in ONS compartments in 75 patients treated with invasive ICP monitoring at the Karolinska University Hospital. Associations between changes in ICP and changes in ONS compartments were estimated with generalized estimating equations. The potential to identify elevated ICP was assessed with the area under the receiver operating characteristic curve (AUROC) for ONS compartments associated with ICP changes.
Results
Both ONSAS and perioptic dura mater thickness were significantly associated with changes in ICP in multivariable modeling. ONSAS was the only compartment that independently predicted changes in ICP, with an AUROC of 0.69 for predicting ICP increase. Still, both the perioptic dura mater thickness and the optic nerve diameter added value in predicting ICP changes in multivariable modeling.
Conclusions
The results from this study challenge the current understanding of the mechanism behind the association between ICP and ONSD. Contrary to the common opinion that ONSAS is the only affected compartment, this study shows a more complex picture. It suggests that all ONS compartments may add value in predicting changes in ICP.


If you do not see content above, kindly GO TO SOURCE.
Not all publishers encode content in a way that enables republishing at Neuro.vip.

This post is Copyright: Jakob Pansell,
Matteo Bottai,
Max Bell,
Peter C. Rudberg,
Ola Friman,
Charith Cooray | July 22, 2024
Wiley: Journal of Neuroimaging: Table of Contents